模拟工件静态定位时,如果定位爪边长小于工件边长,那么工件会有旋转,本文正是求这极限情形。

输入与输出

  1. 输入
  • 工件的边长
  • 定位爪的边长
  1. 输出
  • 工件的极限状态
变量说明
变量说明

算法

逻辑

  1. 工件某一边紧贴定位爪的某一边(点)
  2. 计算工件相邻边是否接触定位爪
  3. 工件以定位爪的某一点旋转角度 α
    α=α+1 再判断 Step 2
flowchart LR
    A[Step 1] --> B{Step 2}
    B -->|No| C[Step 3]
    C --> B
    B -->|Yes| E[Step 4]

代码

以下代码经过简化,完整代码请看最后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import math

# 工件
class Device(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
self.area = self.x * self.y
self.diagonal = math.sqrt(self.x**2+self.y**2)

# 定位爪
class Position(object):
def __init__(self, x, y, dx, dy):
self.x = float(x)
self.y = float(y)
self.dx = float(dx)
self.dy = float(dy)
self.area = self.x * self.y
self.diagonal = min(math.sqrt(self.dx**2+self.y**2),math.sqrt(self.x**2+self.dy**2))

# 点到直线距离
def p2l(p=(0, 0), l=(0, 0, 0)):
x, y = p[0], p[1]
a, b, c = l[0], l[1], l[2]
return abs(a * x + b * y + c) / math.sqrt(a**2 + b**2)

# 两直线交点
def l2l(l1=(0, 0, 0), l2=(0, 0, 0)):
a1, b1, c1 = l1[0], l1[1], l1[2]
a2, b2, c2 = l2[0], l2[1], l2[2]
return (
(c2 * b1 - c1 * b2) / (a1 * b2 - a2 * b1),
(c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1),
)

# 形状检查
def sharp_check(d,p):
if p.x <= d.x or p.y <= d.y:
return True
elif p.dx >= p.x or p.dy >= p.y:
return True
elif d.diagonal < p.diagonal:
return True
else:
return False

# 计算多边形的面积
def calculate_polygon_area(*coords):
n = len(coords)
area = 0
j = n - 1
for i in range(0, n):
area += (coords[j][0] + coords[i][0]) * (coords[j][1] - coords[i][1])
j = i
return abs(area / 2)

print("工件面积:{:.2f}".format(device.area))
print("定位爪区域面积:{:.2f}".format(position.area))
# 工件
cv.create_rectangle((-device.x / 2, device.y / 2), (device.x / 2, -device.y / 2))
# 定位爪
cv.create_rectangle((position.x / 2, position.dy / 2),(position.x / 2 + math.inf, -position.dy / 2))
cv.create_rectangle((-position.dx / 2, position.y / 2 + math.inf),(position.dx / 2, position.y / 2))
cv.create_rectangle((-position.x / 2 - math.inf, position.dy / 2),(-position.x / 2, -position.dy / 2))
cv.create_rectangle((-position.dx / 2, -position.y / 2),(position.dx / 2, -position.y / 2 - math.inf))
# 形状非法
if sharp_check(device,position):
print("形状非法,请重新输入。\n")
return
print("生成中,请稍候...")
# 工件的四个顶点坐标
p01=(position.x/2,-position.dy/2)
p02=(position.dx/2,position.y/2)
p03=(-position.x/2,position.dy/2)
p04=(-position.dx/2,-position.y/2)
# 计算 旋转工件四个顶点
for alpha in range(1, 90000):
alpha = math.radians(alpha/1000)
k = math.tan(alpha)
p1 = (device.x/2*math.cos(alpha)+device.y/2*math.sin(alpha),device.x/2*math.sin(alpha)-device.y/2*math.cos(alpha))
p2 = (device.x/2*math.cos(alpha)-device.y/2*math.sin(alpha),device.x/2*math.sin(alpha)+device.y/2*math.cos(alpha))
p3 = (-device.x/2*math.cos(alpha)-device.y/2*math.sin(alpha),-device.x/2*math.sin(alpha)+device.y/2*math.cos(alpha))
p4 = (-device.x/2*math.cos(alpha)+device.y/2*math.sin(alpha),-device.x/2*math.sin(alpha)-device.y/2*math.cos(alpha))
l1 = (-1/k,-1,1/k*p1[0]+p1[1])
l2 = (k,-1,-k*p2[0]+p2[1])
l3 = (-1/k,-1,1/k*p3[0]+p3[1])
l4 = (k,-1,-k*p4[0]+p4[1])
# 碰到定位爪停止
if any((p2l(p01,l1)<=0.001,p2l(p02,l2)<=0.001,p2l(p03,l3)<=0.001,p2l(p04,l4)<=0.001)):
print("工件极限旋转角:{:.2f}°".format(math.degrees(alpha)))
# X向定位
if any((p2l(p01,l1)<=0.001,p2l(p03,l3)<=0.001)):
p1 = (p1[0],p1[1]-p2l(p02,l2))
p2 = (p2[0],p2[1]-p2l(p02,l2))
p3 = (p3[0],p3[1]-p2l(p02,l2))
p4 = (p4[0],p4[1]-p2l(p02,l2))
# Y向定位
else:
p1 = (p1[0]-p2l(p01,l1),p1[1])
p2 = (p2[0]-p2l(p01,l1),p2[1])
p3 = (p3[0]-p2l(p01,l1),p3[1])
p4 = (p4[0]-p2l(p01,l1),p4[1])
# 工件的极限旋转情形
cv.create_polygon(p1,p2,p3,p4)
break
# 重叠区域计算
# 极限情形的各边
l1 = (-1/k, -1, 1/k*p1[0]+p1[1])
l2 = (k, -1, -k*p2[0]+p2[1])
l3 = (-1/k, -1, 1/k*p3[0]+p3[1])
l4 = (k, -1, -k*p4[0]+p4[1])
# 极限情形与理论情形的各边交点
p11 = l2l(l1,(1,0,-device.x/2))
p12 = l2l(l1,(0,1,-device.y/2))
p13 = l2l(l2,(0,1,-device.y/2))
p14 = l2l(l2,(1,0,device.x/2))
p15 = l2l(l3,(1,0,device.x/2))
p16 = l2l(l3,(0,1,device.y/2))
p17 = l2l(l4,(0,1,device.y/2))
p18 = l2l(l4,(1,0,-device.x/2))
print("重叠部分面积为:{:.2f}\n".format(calculate_polygon_area(p11, p12, p13, p14, p15, p16, p17, p18)))
cv.create_polygon(p11, p12, p13, p14, p15, p16, p17, p18)

成品预览

Python 3.12
Python 3.12

完整代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import math
import re
# import time
import tkinter
import tkinter.ttk
from tkinter.scrolledtext import ScrolledText


# 工件
class Device(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
self.area = self.x * self.y
self.diagonal = math.sqrt(self.x**2+self.y**2)


# 定位爪
class Position(object):
def __init__(self, x, y, dx, dy):
self.x = float(x)
self.y = float(y)
self.dx = float(dx)
self.dy = float(dy)
self.area = self.x * self.y
self.diagonal = min(math.sqrt(self.dx**2+self.y**2),math.sqrt(self.x**2+self.dy**2))


# 点到直线距离
def p2l(p=(0, 0), l=(0, 0, 0)):
x, y = p[0], p[1]
a, b, c = l[0], l[1], l[2]
return abs(a * x + b * y + c) / math.sqrt(a**2 + b**2)


# 两直线交点
def l2l(l1=(0, 0, 0), l2=(0, 0, 0)):
a1, b1, c1 = l1[0], l1[1], l1[2]
a2, b2, c2 = l2[0], l2[1], l2[2]
return (
(c2 * b1 - c1 * b2) / (a1 * b2 - a2 * b1),
(c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1),
)


# 坐标转换
def convert(x, y):
return (x + 450 / 2, 450 / 2 - y)


# 输入检查
def input_check(*args):
pattern = r'^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$'
for i in args:
if not bool(re.match(pattern, i)) or len(i) == 0:
return True
return False

# 形状检查
def sharp_check(d,p):
if p.x <= d.x or p.y <= d.y:
return True
elif p.dx >= p.x or p.dy >= p.y:
return True
elif d.diagonal < p.diagonal:
return True
else:
return False

# 计算多边形的面积
def calculate_polygon_area(*coords):
n = len(coords)
area = 0
j = n - 1
for i in range(0, n):
area += (coords[j][0] + coords[i][0]) * (coords[j][1] - coords[i][1])
j = i
return abs(area / 2)

# 生成
def submit():
cv.delete("all")
if input_check(
device_x.get(),
device_y.get(),
position_x.get(),
position_y.get(),
position_dx.get(),
position_dy.get(),
):
print_t("输入有误,请重新输入。")
else:
calculate(
Device(device_x.get(), device_y.get()),
Position(position_x.get(), position_y.get(), position_dx.get(), position_dy.get()),
)
# 坐标轴
cv.create_line(0, 450 / 2, 450, 450 / 2, dash=(1, 1))
cv.create_line(450 / 2, 0, 450 / 2, 450, dash=(1, 1))


# 计算+绘图
def calculate(device, position):
zoom = 360 / max(device.x, device.y, position.x, position.y)
print_t("工件面积:{:.2f}".format(device.area))
print_t("定位爪区域面积:{:.2f}".format(position.area))
# 工件
cv.create_rectangle(
convert(-device.x / 2 * zoom, device.y / 2 * zoom),
convert(device.x / 2 * zoom, -device.y / 2 * zoom),
fill="#696969",
outline="",
)
# 定位爪
cv.create_rectangle(
convert(position.x / 2 * zoom, position.dy / 2 * zoom),
convert(position.x / 2 * zoom + 999, -position.dy / 2 * zoom),
fill="#00BFFF",
outline="",
)
cv.create_rectangle(
convert(-position.dx / 2 * zoom, position.y / 2 * zoom + 999),
convert(position.dx / 2 * zoom, position.y / 2 * zoom),
fill="#00BFFF",
outline="",
)
cv.create_rectangle(
convert(-position.x / 2 * zoom - 999, position.dy / 2 * zoom),
convert(-position.x / 2 * zoom, -position.dy / 2 * zoom),
fill="#00BFFF",
outline="",
)
cv.create_rectangle(
convert(-position.dx / 2 * zoom, -position.y / 2 * zoom),
convert(position.dx / 2 * zoom, -position.y / 2 * zoom - 999),
fill="#00BFFF",
outline="",
)
# 形状非法
if sharp_check(device,position):
print_t("形状非法,请重新输入。\n")
return
print_t("生成中,请稍候...")
p01=(position.x/2,-position.dy/2)
p02=(position.dx/2,position.y/2)
p03=(-position.x/2,position.dy/2)
p04=(-position.dx/2,-position.y/2)
# 计算 旋转工件四个顶点
for alpha in range(1, 90000):
alpha = math.radians(alpha/1000)
k = math.tan(alpha)
# 旧算法,有bug
# (-position.dx/2,-position.y/2)
# (-position.dx/2-math.cos(alpha)*device.y,-position.y/2+math.sin(alpha)*device.y)
# y-y1=k(x-x1)
# kx-y-kx1+y1=0
# p = (position.dx / 2, position.y / 2)
# l = (k,-1,-k * (-position.dx / 2 - math.cos(90 - alpha) * device.y) - position.y / 2 + math.sin(90 - alpha) * device.y,
# )
# if p2l(p, l) < 0.001:
# break
# print_t("工件最大旋转角:{:.2f}°".format(alpha))
# # (-position.x/2,position.dy/2)
# p1 = l2l(l, (-1 / k, -1, 1 / k * (-position.x / 2) + position.dy / 2))
# p2 = (
# p1[0] + math.cos(alpha) * device.x,
# p1[1] + math.sin(alpha) * device.x,
# )
# p3 = (
# p2[0] + math.sin(alpha) * device.y,
# p2[1] - math.cos(alpha) * device.y,
# )
# p4 = (
# p3[0] - math.cos(alpha) * device.x,
# p3[1] - math.sin(alpha) * device.x,
# )
p1 = (device.x/2*math.cos(alpha)+device.y/2*math.sin(alpha),device.x/2*math.sin(alpha)-device.y/2*math.cos(alpha))
p2 = (device.x/2*math.cos(alpha)-device.y/2*math.sin(alpha),device.x/2*math.sin(alpha)+device.y/2*math.cos(alpha))
p3 = (-device.x/2*math.cos(alpha)-device.y/2*math.sin(alpha),-device.x/2*math.sin(alpha)+device.y/2*math.cos(alpha))
p4 = (-device.x/2*math.cos(alpha)+device.y/2*math.sin(alpha),-device.x/2*math.sin(alpha)-device.y/2*math.cos(alpha))
l1 = (-1/k,-1,1/k*p1[0]+p1[1])
l2 = (k,-1,-k*p2[0]+p2[1])
l3 = (-1/k,-1,1/k*p3[0]+p3[1])
l4 = (k,-1,-k*p4[0]+p4[1])
# 碰到定位爪停止
if any((p2l(p01,l1)<=0.001,p2l(p02,l2)<=0.001,p2l(p03,l3)<=0.001,p2l(p04,l4)<=0.001)):
print_t("工件极限旋转角:{:.2f}°".format(math.degrees(alpha)))
# X向定位
if any((p2l(p01,l1)<=0.001,p2l(p03,l3)<=0.001)):
p1 = (p1[0],p1[1]-p2l(p02,l2))
p2 = (p2[0],p2[1]-p2l(p02,l2))
p3 = (p3[0],p3[1]-p2l(p02,l2))
p4 = (p4[0],p4[1]-p2l(p02,l2))
# Y向定位
else:
p1 = (p1[0]-p2l(p01,l1),p1[1])
p2 = (p2[0]-p2l(p01,l1),p2[1])
p3 = (p3[0]-p2l(p01,l1),p3[1])
p4 = (p4[0]-p2l(p01,l1),p4[1])
cv.create_polygon(
convert(p1[0] * zoom, p1[1] * zoom),
convert(p2[0] * zoom, p2[1] * zoom),
convert(p3[0] * zoom, p3[1] * zoom),
convert(p4[0] * zoom, p4[1] * zoom),
fill="",
outline="#FF4500",
width=2,
dash=(10,5),
)
break
# 重叠区域计算
# 极限情形的各边
l1 = (-1/k,-1,1/k*p1[0]+p1[1])
l2 = (k,-1,-k*p2[0]+p2[1])
l3 = (-1/k,-1,1/k*p3[0]+p3[1])
l4 = (k,-1,-k*p4[0]+p4[1])
p11 = l2l(l1,(1,0,-device.x/2))
p12 = l2l(l1,(0,1,-device.y/2))
p13 = l2l(l2,(0,1,-device.y/2))
p14 = l2l(l2,(1,0,device.x/2))
p15 = l2l(l3,(1,0,device.x/2))
p16 = l2l(l3,(0,1,device.y/2))
p17 = l2l(l4,(0,1,device.y/2))
p18 = l2l(l4,(1,0,-device.x/2))
print_t("重叠部分面积为:{:.2f}\n".format(calculate_polygon_area(p11, p12, p13, p14, p15, p16, p17, p18)))
# 极限情形与理论情形的各边交点
cv.create_polygon(
convert(p11[0] * zoom, p11[1] * zoom),
convert(p12[0] * zoom, p12[1] * zoom),
convert(p13[0] * zoom, p13[1] * zoom),
convert(p14[0] * zoom, p14[1] * zoom),
convert(p15[0] * zoom, p15[1] * zoom),
convert(p16[0] * zoom, p16[1] * zoom),
convert(p17[0] * zoom, p17[1] * zoom),
convert(p18[0] * zoom, p18[1] * zoom),
fill="",
outline="",
activefill="#FF0000",
)


# 输出
def print_t(message):
output.config(state="normal")
output.insert("end", f"{message}\n")
output.see("end")
output.config(state="disabled")


# GUI
root = tkinter.Tk()
root.title("四边定位的旋转量模拟")
root.geometry("650x480")
root.resizable(False, False)

# 画布
cv = tkinter.Canvas(
root, width=450, height=450, highlightbackground="gray", highlightthickness=1
)
cv.create_line(0, 450 / 2, 450, 450 / 2, dash=(1, 1))
cv.create_line(450 / 2, 0, 450 / 2, 450, dash=(1, 1))
cv.place(x=5, y=5)

# 输入
frame1 = tkinter.ttk.LabelFrame(root, text="输入", height=240, width=200)
frame1.place(x=470, y=2)

tkinter.ttk.Label(frame1, text="工件x").grid(column=0, row=0, sticky=tkinter.W)
device_x = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),"%P",),
)
device_x.grid(column=1, row=0)

tkinter.ttk.Label(frame1, text="工件y").grid(column=0, row=1, sticky=tkinter.W)
device_y = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),"%P",),
)
device_y.grid(column=1, row=1)

tkinter.ttk.Label(frame1, text="定位爪x").grid(column=0, row=2, sticky=tkinter.W)
position_x = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),"%P",),
)
position_x.grid(column=1, row=2)

tkinter.ttk.Label(frame1, text="定位爪y").grid(column=0, row=3, sticky=tkinter.W)
position_y = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(
root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),
"%P",
),
)
position_y.grid(column=1, row=3)

tkinter.ttk.Label(frame1, text="定位爪Dx").grid(column=0, row=4, sticky=tkinter.W)
position_dx = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),"%P",),
)
position_dx.grid(column=1, row=4)

tkinter.ttk.Label(frame1, text="定位爪Dy").grid(column=0, row=5, sticky=tkinter.W)
position_dy = tkinter.ttk.Entry(
frame1,
width=10,
validate="key",
validatecommand=(root.register(lambda x: x.isdigit() or x == "" or x.count(".") == 1),"%P",),
)
position_dy.grid(column=1, row=5)

# 生成
button1 = tkinter.ttk.Button(frame1, text="生成", command=submit)
button1.grid(column=0, row=6, columnspan=2)

# 输出
frame2 = tkinter.ttk.LabelFrame(root, text="输出", height=240, width=170)
frame2.place(x=470, y=230)
output = ScrolledText(frame2, width=20, height=15)
output.pack()

root.mainloop()

代码下载请见 Malvern's File Server


网站地图 | 状态监测 | 图片加密&解密 | File Server | 博友圈 | 博客说
Copyright 2022-2025 | Powered by Hexo 7.3.0 & Stellar 1.33.1
总访问量次 |